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1 Introduction

The origin of CP violation, which was first observed in the kaon system four decades

ago [1], has remained one of the fundamental questions of elementary particle physics. In

recent years, the B factories have established that the Standard Model (SM) picture of

CP violation, in which all CP -violating effects are generated by the single phase δCKM

in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [2, 3], is consistent with

the observed pattern of CP -violating phenomena in both the Bd and K meson systems [4].

However, as the SM cannot account for the baryon asymmetry in the Universe today [5],

new physics (NP) is necessarily required to describe all observed phenomena with CP -

violation involved.

One arena to seek the NP effects is in flavor-changing neutral current transitions

(FCNC) where the SM contributions first appear at the one-loop level and the NP effects

can be competitive. The emblematic set of such processes is the set of b → s transitions,

which include Bs − B̄s mixing and the set of neutral Bd meson decays which occur via

b → sq̄q (q = u, d, c, s) transitions. Several of these processes are also of interest because

recent measurements exhibit discrepancies with the SM predictions at the level of a few

standard deviations, which may suggest the intriguing possibility of physics beyond the

SM. The current status of the data is as follows:
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Observable 1σ C.L. 2σ C.L.

φNP
Bs

[◦] (S1) -20.3 ± 5.3 [-30.5,-9.9]

φNP
Bs

[◦] (S2) -68.0 ± 4.8 [-77.8,-58.2]

CBs 1.00 ± 0.20 [0.68,1.51]

φNP
s [◦] (S1) -56.3 ± 8.3 [-69.8,-36.0]

ANP
s /ASM

s (S1) 0.66 ± 0.28 [0.24,1.11]

φNP
s [◦] (S2) -79.1 ± 2.6 [-84.0,-72.8]

ANP
s /ASM

s (S2) 1.78 ± 0.03 [1.53,2.19]

Table 1. Fit results for the Bs − B̄s mixing parameters [6]. The two φNP
Bs

solutions (“S1” and

“S2”) result from measurement ambiguities; see [6] for details.

• Bs − B̄s mixing phase. The standard way to parametrize NP in Bs − B̄s mixing

is to express the off-diagonal mixing matrix element as follows:

MBs

12 = (MBs

12 )SMCBse
2iφNP

Bs . (1.1)

The SM predicts that CBs = 1 and φNP
Bs

= 0. Though the data indicate that CBs does

not differ significantly from unity, the results of a recent analysis [6] suggest that φNP
Bs

deviates from zero at the 3σ level (see table 1) (also see [7] for an earlier discussion on

this discrepancy). This analysis combines all the available experimental results on Bs
mixing, including the new tagged analyses of Bs → ψφ by CDF [8] and D∅ [9] (note

that no single measurement yet has a 3σ significance.). The discrepancy disfavors

NP scenarios which obey minimal flavor violation (MFV), i.e., with φNP
Bs
≈ 0, and

instead suggests NP which exhibits flavor violation in the b → s transitions (e.g.,

see [10] and references therein). For convenience, in table 1 we also give the data in

terms of ANP
s /ASM

s and φNP
s which are related to CBs and φNP

Bs
according to

CBse
2iφNP

Bs = 1 +
ANP
s

ASM
s

e2iφ
NP
s . (1.2)

• CP asymmetries in neutral Bd decays. The set of neutral Bd decays in question

is the set of QCD penguin-dominated charmless decays that occur via b → sq̄q

(q = u, d, c, s) transitions. The CP asymmetries of such decays into a final CP -

eigenstate fCP are given by

AfCP
(t) =

Γ(B̄d(t)→ fCP )− Γ(Bd(t)→ fCP )

Γ(B̄d(t)→ fCP ) + Γ(Bd(t)→ fCP )

∣

∣

∣

∆ΓBd
=0

= −CfCP
cos(∆MBd

t) + SfCP
sin(∆MBd

t), (1.3)

in which CfCP
and SfCP

are direct and mixing-induced CP asymmetry parameters.

The SM predictions for many decays of this type, including Bd → ψKS and Bd →
(φ, η′, π, ρ, ω, f0)KS are as follows:

− ηfCP
SfCP

= sin 2β +O(λ2), CfCP
= 0 +O(λ2), (1.4)

– 2 –
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fCP −ηCPSfCP
(1σ C.L.) CfCP

(1σ C.L.)

ψKS +0.672± 0.024 +0.005± 0.019

φKS +0.44+0.17
−0.18 −0.23± 0.15

η′KS +0.59± 0.07 −0.05± 0.05

πKS +0.57± 0.17 +0.01± 0.10

ρKS +0.63+0.17
−0.21 −0.01± 0.20

ωKS +0.45± 0.24 −0.32± 0.17

f0KS +0.62+0.11
−0.13 0.10± 0.13

Table 2. World averages of the experimental results for the CP asymmetries in Bd decays via

b→ q̄qs transitions [11].

with β ≡ arg [−(VcdV
∗
cb)/(VtdV

∗
tb)], λ = sin θc being the Cabibbo angle, and ηfCP

= ±1

being the CP eigenvalue for the final state fCP . However, the central values of sin 2β

directly measured from the penguin-dominated modes are systematically below the

SM prediction and the results obtained from measuring the charmed Bd → ψKS

mode. Meanwhile, the central values of the direct CP asymmetry measured from

Bd → φKS and Bd → ωKS modes are also small compared to that obtained from the

Bd → ψKS mode (see table 2). Given that theBd → ψKS decay is dominated by tree-

level amplitude in the SM, large absolute values for ∆SfCP
= −ηfCP

SfCP
+ηψKS

SψKS

and ∆CfCP
= CfCP

− CψKS
may imply interesting NP in the b→ s transitions.

To account for these discrepancies appearing in Bs − B̄s mixing and Bd decays, a number

of NP scenarios have been studied [12]. In many of these scenarios, the effects of NP in

the b → s transitions are loop-suppressed and can compete with SM contributions. The

most popular and well-studied scenarios are models with MFV, in which the only source of

CP violation is the single irremovable phase of the CKM mixing matrix. MFV scenarios,

however, face difficulties in that they do not generally allow for a nonvanishing φBs .

In this work, we will study the constraints from b→ s transitions on models with fam-

ily non-universal gauged U(1)′ symmetries. Family non-universal U(1)′ gauge symmetries

are present in many well-motivated extensions of the SM. For example, they are ubiqui-

tous in semirealistic string compactifications, both within perturbative heterotic models

(e.g., the free fermionic models [13, 14]) and Type II string models (e.g., the intersecting

brane models [15]). Family non-universal U(1)′ symmetries are also easily obtained within

extra-dimensional models, such as warped Randall-Sundrum models that address the flavor

problem where the relevant Z ′ gauge boson can be either the zero or the excited Kaluza-

Klein modes (for recent discussion, see [16]). Ultimately, the underlying reason is that it is

typical for the third family to have different properties than the other two families, often

for fermion mass generation. Such scenarios are of particular interest because unlike the

scenarios studied above, they allow for the intriguing possibility of tree-level FCNC, with

contributions that are competitive with the SM even for small U(1)′ couplings. Depend-

ing on the details of the model, family-dependent U(1)′ scenarios can result in new FC

operators and/or modified Wilson coefficients to the existing SM operators in the oper-

– 3 –
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ator product expansion, providing a rich framework beyond MFV to explore FCNC and

CP -violating effects.

We follow the general framework for addressing Z ′-induced FCNC as developed in [18]

and systemize its application to b → s transitions. Rather than considering specific U(1)′

models mentioned above, we adopt a model-independent approach in which the main re-

strictions are family universal charges for the first and second generations and small fermion

mixing angles. The formalism developed in subsection 2.1 and the analyses in the subse-

quent sections, therefore, could be applied to any models in which there exist tree-level

FCNC effects induced by such heavy neutral gauge bosons (this heavy neutral gauge boson

can even be from non-Abelian gauge symmetry). In this work, we also neglect the effects

of Z − Z ′ mixing (which are known to be small), and assume the absence of any exotic

fermions that could mix with the usual SM fermions through non-universal Z ′ couplings,

which may also result in nontrivial FCNC effects (e.g., see [17]).

This work is an extension of our earlier work [19], in which we performed a correlated

analysis of the ∆B = 1, 2 processes mentioned above for a specific set of U(1)′ scenarios.

That analysis was in contrast to other studies of U(1)′ scenarios based on mode-by-mode

analyses [20, 21]. The purpose of this paper is twofold: first, to provide more details of the

formalism and analysis than were given explicitly in [19], and second, to analyze a more

general set of U(1)′ models. Our results demonstrate that the b → s transitions not only

place important constraints on family non-universal Z ′ couplings and mass scale, but also

that family non-universal U(1)′ scenarios can explain the currently observed discrepancies

with the SM predictions for Bs − B̄s mixing and the time-dependent CP asymmetries of

the penguin-dominated Bd → (π, φ, η′, ρ, ω, f0)KS decays.

This paper is structured as follows. We begin by providing an overview of the for-

malism of the Z ′ induced FCNC effects in the b → s transitions and present the effective

Hamiltonian for the processes of interest at the b quark mass scale in section 2. In section

3, first we analyze the FCNC constraints within several special limits of the general U(1)′

parameter space, and then turn to a more general analysis. Our summary and conclusions

are presented in section 4.

2 Theoretical background

2.1 Formalism of Z ′-induced FCNC effects

The general framework for studying Z ′-induced FCNC effects has been developed in [18].

In this section, we will systematically formalize its applications to the case of the b → s

transitions (the generalization to b→ d transitions is straightforward).

We begin by considering the SM extended by a single additional U(1)′ gauge symmetry

(the generalization to multiple U(1)′ gauge symmetries is straightforward). In this theory,

the neutral current Lagrangian in the SM gauge eigenstate basis is given by

LNC = −eJµemAµ − g1JµZZµ − g2J
µ
Z′Z

′
µ, (2.1)

in which Aµ is the U(1)em gauge boson, Zµ is the massive electroweak (EW) neutral gauge

boson, Z ′
µ is the gauge boson associated with the additional Abelian gauge symmetry, and

– 4 –
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g1 = g/ cos θW and g2 are the gauge couplings of the Zµ and Z ′
µ bosons, respectively. The

currents are given by

JµZ =
∑

ψ

∑

i

ψiγ
µ
[

ǫψL

i PL + ǫψR

i PR

]

ψi, (2.2)

JµZ′ =
∑

ψ

∑

i,j

ψiγ
µ
[

ǫ̃ψL

ij PL + ǫ̃ψR

ij PR

]

ψj , (2.3)

in which ψ labels the SM fermions, i and j are family indices, and PR,L = (1± γ5)/2. The

(family universal) SM chiral charges are given by

ǫψL

i = tψL

3 − sin2 θWQψL
, ǫψR

i = − sin2 θWQψR
, (2.4)

in which tψL

3 denotes the third component of the weak isospin and QψL,R
are the electric

charges of ψL,R. Without loss of generality, the Z ′ chiral charges can be diagonalized by

choosing the appropriate gauge basis for the fermions:

ǫ̃
ψL,R

ij = ǫ̃
ψL,R

i δij . (2.5)

In particular, SU(2)L symmetry requires that1

ǫ̃uL

i ≡ ǫ̃dL

i , ǫ̃eL

i ≡ ǫ̃νL

i . (2.6)

If the diagonal U(1)′ chiral charges are non-universal, flavor-changing (FC) Z ′ couplings

are generically induced by fermion mixing. The fermion Yukawa matrices hψ in the weak

eigenstate basis are diagonalized by the unitary matrices VψL,R
, such that

hψ,diag = VψR
hψV

†
ψL
, (2.7)

and the CKM matrix is given by

VCKM = VuL
V †
dL
. (2.8)

Hence, the chiral Z ′ couplings in the fermion mass eigenstate basis take the form:

BψL ≡ VψL
ǫ̃ψLV †

ψL
, BψR ≡ VψR

ǫ̃ψRV †
ψR

. (2.9)

However, it is known that the constraints from K − K̄ mixing and from µ − e conversion

in muonic atoms exclude significant non-universal effects for the first two families, which

suggests that

BψL,R =







B
ψL,R

11 0 B
ψL,R

13

0 B
ψL,R

11 B
ψL,R

23

B
ψL,R∗

13 B
ψL,R∗

23 B
ψL,R

33






, (2.10)

1For family non-universal U(1)′ gauge symmetries in Randall-Sundrum scenarios, this is true in the limit

that the mixing between the zero and KK modes is small.

– 5 –
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at least for the down-type quarks and e, µ, τ leptons. The most straightforward way

to achieve this coupling structure is to assume universal U(1)′ charges for the down-type

fermions of the first two families, i.e.,

ǫ̃ψL,R =







ǫ̃
ψL,R

1 0 0

0 ǫ̃
ψL,R

1 0

0 0 ǫ̃
ψL,R

3






. (2.11)

With the unitary matrices VψL,R
written as

VψL,R
=

(

WψL,R
XψL,R

YψL,R
ZψL,R

)

, (2.12)

where WψL,R
is a 2× 2 submatrix, one obtains

BψL,R =

(

ǫ̃
ψL,R

1 W †
ψL,R

WψL,R
+ ǫ̃

ψL,R

3 Y †
ψL,R

YψL,R
ǫ̃
ψL,R

1 W †
ψL,R

XψL,R
+ ǫ̃

ψL,R

3 Y †
ψL,R

ZψL,R

ǫ̃
ψL,R

1 X†
ψL,R

WψL,R
+ ǫ̃

ψL,R

3 Z†
ψL,R

YψL,R
ǫ̃
ψL,R

1 X†
ψL,R

XψL,R
+ ǫ̃

ψL,R

3 Z†
ψL,R

ZψL,R

)

.

(2.13)

Therefore, in the limit of small fermion mixing angles or small XψL,R
, YψL,R

elements, a Z ′

coupling structure of the type given in eq. (2.10) is produced, in which

B
ψL,R

11 = ǫ̃
ψL,R

1 , B
ψL,R

33 = ǫ̃
ψL,R

3

B
ψL,R

13 , B
ψL,R

23 ∼ O(XψL,R
, YψL,R

), (2.14)

such that B
ψL,R

13 and B
ψL,R

23 are in general both complex parameters.

EW symmetry breaking induces Z−Z ′ mixing, such that the gauge eigenstates Zµ and

Z ′
µ are related to the mass eigenstates Z

(n)
µ (n = 1, 2) by an orthogonal transformation. In

the mass eigenstate basis, the Lagrangian couplings are given by

LZNC = −
[

g1 cos θJµZ + g2 sin θJµZ′

]

Z(1)
µ −

[

−g1 sin θJµZ + g2 cos θJµZ′

]

Z(2)
µ , (2.15)

where θ is the Z − Z ′ mixing angle, JµZ is given in eq. (2.2), and JµZ′ is of the form of

eq. (2.3) with ǫ̃ψL,R replaced by BψL,R from eq. (2.9). In this analysis, we neglect kinetic

mixing since it simply amounts to a redefinition of the unknown Z ′ couplings.2

At the EW scale, the tree-level four-fermion interactions are described by the product

of gauge currents

Leff =
−4GF√

2

(

ρeffJZ
2 + 2wJZ · JZ′ + yJZ′

2
)

=
−4GF√

2

∑

ψ,χ

∑

i,j,m,n

[

CijmnS
ij
mn + C̃ijmnS̃

ij
mn +Dij

mnT
ij
mn + D̃ij

mnT̃
ij
mn

]

. (2.16)

2Kinetic mixing allows the redefined Z′ charges to have a component of weak hypercharge, which would

otherwise not be allowed. This feature is irrelevant for the purposes of this paper.
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In eq. (2.16), the local current-current operators are3 (i, j,m, n are family indices):

Sijmn =
(

ψiγ
µPLψj

)

(χmγµPLχn) , S̃ijmn =
(

ψiγ
µPRψj

)

(χmγµPRχn) ,

T ijmn =
(

ψiγ
µPLψj

)

(χmγµPRχn) , T̃ ijmn =
(

ψiγ
µPRψj

)

(χmγµPLχn) , (2.17)

and the coefficients are

Cijmn = ρeffδijδmnǫ
ψL

i ǫχL
m + wδijǫ

ψL

i BχL
mn + wδmnǫ

χL
m BψL

ij + yBψL

ij B
χL
mn,

C̃ijmn = ρeffδijδmnǫ
ψR

i ǫχR
m + wδijǫ

ψR

i BχR
mn + wδmnǫ

χR
m BψR

ij + yBψR

ij B
χR
mn,

Dij
mn = ρeffδijδmnǫ

ψL

i ǫχR
m + wδijǫ

ψL

i BχR
mn + wδmnǫ

χR
m BψL

ij + yBψL

ij B
χR
mn,

D̃ij
mn = ρeffδijδmnǫ

ψR

i ǫχL
m + wδijǫ

ψR

i BχL
mn + wδmnǫ

χL
m BψR

ij + yBψR

ij B
χL
mn, (2.18)

in which

ρeff = ρ1 cos2 θ + ρ2 sin2 θ, ρa =
M2
W

M2
a cos2 θW

,

w =
g2
g1

sin θ cos θ(ρ1 − ρ2),

y =

(

g2
g1

)2

(ρ1 sin2 θ + ρ2 cos2 θ). (2.19)

In eqs. (2.19), Ma denotes the masses of the neutral gauge boson mass eigenstates, and

θW is the EW mixing angle. We do not specify the ψ and χ dependence of the coefficients

C, C̃,D, D̃ in eqs. (2.18), which can be understood from the context.

For b→ s transitions, the local operators are given by Sbsmn, S̃
bs
mn, T

bs
mn and T̃ bsmn, with

coefficients that are given by

Cbsmn = wδmnǫ
χL
m BL

bs + yBL
bsB

χL
mn ,

C̃bsmn = wδmnǫ
χR
m BR

bs + yBR
bsB

χR
mn ,

Dbs
mn = wδmnǫ

χR
m BL

bs + yBL
bsB

χR
mn ,

D̃bs
mn = wδmnǫ

χR
m BR

bs + yBR
bsB

χL
mn . (2.20)

With the Z − Z ′ mixing angle neglected, the coefficients can be written as

Cbsmn =

(

g2MZ

g1MZ′

)2

BL
bsB

χL
mn ,

C̃bsmn =

(

g2MZ

g1MZ′

)2

BR
bsB

χR
mn ,

Dbs
mn =

(

g2MZ

g1MZ′

)2

BL
bsB

χR
mn ,

D̃bs
mn =

(

g2MZ

g1MZ′

)2

BR
bsB

χL
mn. (2.21)

3These operators are not all independent. For couplings of four fermions of the same type, ψ = χ, e.g.

four charged leptons, one has Sij
mn = Smn

ij , S̃ij
mn = S̃mn

ij and T ij
mn = T̃mn

ij .
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For convenience, in the following we will resolve the factor g2MZ/(g1MZ′) into the B

elements or the chiral couplings.

At tree level, there are three classes of b → s transitions which are sensitive to the

possible NP effects that result from an additional family non-universal U(1)′ symmetry:

b → sq̄q transitions, b → sl̄l transitions, and Bs − B̄s mixing. Here “q” and “l” denote

quarks and leptons, respectively. For the b → sq̄q transitions, the Z ′ effects are described

by the effective Hamiltonian

HZ′

eff(b→ sq̄q) =
2GF√

2

(

(s̄b)V−A

∑

q

(Cbsqq(q̄q)V−A +Dbs
qq(q̄q)V+A)

+(s̄b)V+A

∑

q

(D̃bs
qq(q̄q)V−A + C̃bsqq(q̄q)V+A)

)

+ h.c., (2.22)

in which the sum is over the active quarks for a given process. These Z ′-induced FCNC

effects can be understood as corrections to the SM operators or to the new penguin op-

erators defined in A, since both lead to the same hadronic matrix elements. Explicitly,

comparing eq. (2.22) with

HZ′

eff(b→ sq̄q) (2.23)

−GF√
2
VtbV

∗
ts

[

(s̄b)V−A

∑

q

((

∆C3 + ∆C9
3

2
eq

)

(q̄q)V−A +

(

∆C5 + ∆C7
3

2
eq

)

(q̄q)V+A

)

+(s̄b)V+A

∑

q

((

∆C̃3 + ∆C̃9
3

2
eq

)

(q̄q)V+A +

(

∆C̃5 + ∆C̃7
3

2
eq

)

(q̄q)V−A

)

]

+ h.c.,

results in 4nq equations (nq is the number of active quarks in the final states):

∆C3 + ∆C9
3

2
eq =

−2

VtbV
∗
ts

Cbsqq ,

∆C5 + ∆C7
3

2
eq =

−2

VtbV
∗
ts

Dbs
qq,

∆C̃3 + ∆C̃9
3

2
eq =

−2

VtbV
∗
ts

C̃bsqq ,

∆C̃5 + ∆C̃7
3

2
eq =

−2

VtbV
∗
ts

D̃bs
qq, (2.24)

where ∆C denotes Z ′ correction to the Wilson coefficients of the SM operators and ∆C̃

denotes the Wilson coefficients of the operators beyond the SM ones. For charmless pro-

cesses with q from the first two families, these equations are solvable because of the following

relation obeyed by the down-type quark couplings:

B
ψL,R

11 = B
ψL,R

22 , (2.25)

which is extracted from eq. (2.10). The Z ′ corrections to the Wilson coefficients are then

found to be4

∆C3 = − 2

3VtbV
∗
ts

(

Cbsuu + 2Cbsdd

)

, ∆C9 = − 4

3VtbV
∗
ts

(

Cbsuu − Cbsdd
)

,

4Though the solutions to eq. (2.24) are not unique in the case with nq = 1, the physics is unaffected
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∆C5 = − 2

3VtbV
∗
ts

(

Dbs
uu + 2Dbs

dd

)

, ∆C7 = − 4

3VtbV
∗
ts

(

Dbs
uu −Dbs

dd

)

,

∆C̃3 = − 2

3VtbV
∗
ts

(

C̃bsuu + 2C̃bsdd

)

, ∆C̃9 = − 4

3VtbV
∗
ts

(

C̃bsuu − C̃bsdd
)

,

∆C̃5 = − 2

3VtbV
∗
ts

(

D̃bs
uu + 2D̃bs

dd

)

, ∆C̃7 = − 4

3VtbV
∗
ts

(

D̃bs
uu − D̃bs

dd

)

. (2.26)

We pause here to comment on subtleties in eq. (2.26). Recall that in the limit of small

fermion mixing angles, eq. (2.14) holds for the down-type quarks. To obtain the CKM

matrix as given in eq. (2.8) without requiring fine-tuned cancellations, the mixing angles

for the up-type left-chiral quarks should also be small in this limit. Due to the SU(2)L
constraint of eq. (2.6), therefore, eq. (2.14) can also be applied to the up-type left-chiral

quarks. In this case, it is straightforward to see that

BL
uu −BL

dd ≈ ǫ̃Luu − ǫ̃Ldd ≡ 0, (2.27)

and hence

∆C9 ≈ 0, ∆C̃7 ≈ 0,

∆C3 ≈ −
2

VtbV
∗
ts

Cbsdd, ∆C̃5 ≈ −
2

VtbV
∗
ts

D̃bs
dd. (2.28)

Note that a relation similar to eq. (2.6) does not exist for the right-chiral SM fermions, so

∆C7 and ∆C̃9 are generically non-trivial. In regards to the color-allowed penguin operators,

their Wilson coefficients are corrected by Z ′ effects only at the loop level where the color-

indices are mixed by gluons. Since these effects suffer loop and Z ′ mass double suppressions,

we will not consider them further in this paper.

For the b→ sl̄l transitions, the Z ′ contributions to the effective Hamiltonian are

HZ′

eff(b→ sl̄l) =
2GF√

2

(

(s̄b)V−A(Cbsll (l̄l)V−A +Dbs
ll (l̄l)V+A)

+(s̄b)V+A(D̃bs
ll (l̄l)V−A + C̃bsll (l̄l)V+A

)

+ h.c. (2.29)

Comparing eq. (2.29) with

HZ′

eff (b→ sl̄l) = −GF√
2
VtbV

∗
ts

(

∆C9VQ9V + ∆C10AQ10A

+∆C̃9V Q̃9V + ∆C̃10AQ̃10A

)

+ h.c., (2.30)

one can see that the Z ′ corrections to the Wilson coefficients take the following form:

∆C9V = − 2

VtbV
∗
ts

(Cbsll +Dbs
ll ),

since it is only sensitive to the linear combinations on the left hand side of eq. (2.24). For the charmed

processes where generally we have nq = 1 , the formula in eq. (2.26) can also be applied as long as eq. (2.25)

holds for the up-type quarks. If eq. (2.25) does not hold, then the “uu” indices in these formula need to be

replaced by “cc”.
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∆C10A = − 2

VtbV
∗
ts

(−Cbsll +Dbs
ll ),

∆C̃9V = − 2

VtbV
∗
ts

(C̃bsll + D̃bs
ll ),

∆C̃10A = − 2

VtbV
∗
ts

(C̃bsll − D̃bs
ll ). (2.31)

Note that if the leptons in the process are neutrinos, eqs. (2.31) reduces to

∆C9V = − 2

VtbV
∗
ts

Cbsll ,

∆C10A =
2

VtbV
∗
ts

Cbsll ,

∆C̃9V = − 2

VtbV
∗
ts

D̃bs
ll ,

∆C̃10A =
2

VtbV
∗
ts

D̃bs
ll , (2.32)

since right-handed neutrinos are generally decoupled at low energy scales.

For Bs − B̄s mixing, the Z ′ corrections to the effective Hamiltonian take the form

HZ′

eff(Bs − B̄s) =
GF√

2

(

Cbsbs (s̄b)V−A(s̄b)V−A +Dbs
bs(s̄b)V−A(s̄b)V+A

+D̃bs
bs(s̄b)V+A(s̄b)V−A + C̃bsbs (s̄b)V+A(s̄b)V+A

)

+ h.c. (2.33)

Once again, upon comparing this expression to

HZ′

eff (Bs − B̄s) = −GF√
2

(

∆CBs

1 QBs

1 + ∆C̃Bs

1 Q̃Bs

1 + 2∆C̃Bs

3 Q̃Bs

3

)

+ h.c., (2.34)

the Z ′ corrections to the Wilson coefficients are easily determined to be

∆CBs

1 = −Cbsbs ,
∆C̃Bs

1 = −C̃bsbs
∆C̃Bs

3 = −1

2
(Dbs

bs + D̃bs
bs) = −D̃bs

bs. (2.35)

As in the b → sq̄q transitions, the Z ′ effects only correct the Wilson coefficients of the

color-allowed operators at a higher loop level, so we will not consider them further here.

To summarize, in table (3) we classify the tree-level Z ′ contributions to the b → s

transitions according to whether they are relevant or irrelevant to the SM operators.

Before considering the general parameter space, it is worthwhile to consider a few

special limits: (1) the LR limit: |BL
bs| = |BR

bs|, φLbs = φRbs; (2) the LL limit: ǫψR ∝ I; and (3)

the RR limit: ǫψL ∝ I, where I is the identity. The Z ′ corrections to the Wilson coefficients

in these limits are summarized as follows:

1. LR limit: BLbs = BRbs.

∆CBs

1 = ∆C̃Bs

1 = ∆C̃Bs

3 = −(BL
bs)

2,
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SM operators Beyond SM Operators

b→ sq̄q ∆Ca, a = 3, 5, 7 ∆C̃a, a = 3, 5, 9

b→ sl̄l ∆Ca, a = 9V, 10A ∆C̃a, a = 9V, 10A

Bs − B̄s mixing ∆CBs

1 ∆C̃Bs
a , a = 1, 3

Table 3. Classification of the tree-level Z ′ corrections to the Wilson coefficients in the b → s

transitions.

∆C3 = ∆C̃5 = − 2

VtbV
∗
ts

BL
bsB

L
dd,

∆C̃3 = ∆C5 = − 2

3VtbV
∗
ts

BL
bs

(

BR
uu + 2BR

dd

)

,

∆C7 = ∆C̃9 = − 4

3VtbV
∗
ts

BL
bs

(

BR
uu −BR

dd

)

,

∆C9V = ∆C̃9V = − 2

VtbV
∗
ts

BL
bs(B

L
ll +BR

ll ),

∆C10A = ∆C̃10A = − 2

VtbV
∗
ts

BL
bs(−BL

ll +BR
ll ). (2.36)

2. LL limit: ǫψR ∝ I.

∆CBs

1 = −(BL
bs)

2,

∆C3 = − 2

VtbV
∗
ts

BL
bsB

L
dd,

∆C5 = − 2

3VtbV
∗
ts

BL
bs

(

BR
uu + 2BR

dd

)

,

∆C7 = − 4

3VtbV
∗
ts

BL
bs

(

BR
uu −BR

dd

)

,

∆C9V = − 2

VtbV
∗
ts

BL
bs(B

L
ll +BR

ll ),

∆C10A = − 2

VtbV
∗
ts

BL
bs(−BL

ll +BR
ll ). (2.37)

3. RR limit: ǫψL ∝ I.

∆C̃Bs

1 = −(BR
bs)

2,

∆C̃3 = − 2

3VtbV
∗
ts

BR
bs

(

BR
uu + 2BR

dd

)

,

∆C̃5 = − 2

VtbV
∗
ts

BR
bsB

L
dd,

∆C̃9 = − 4

3VtbV
∗
ts

BR
bs

(

BR
uu −BR

dd

)

,

∆C̃9V = − 2

VtbV
∗
ts

BR
bs(B

L
ll +BR

ll ),

∆C̃10A = − 2

VtbV
∗
ts

BR
bs(−BL

ll +BR
ll ). (2.38)
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We will focus on the correlations between Bs− B̄s mixing and the hadronic Bd meson

decays. For the latter, though Z ′-mediated effects can occur in both the QCD and EW

penguins, we make a conservative assumption in this paper that they are mainly manifest

in the EW penguins, such that |∆C3,5| ≪ |∆C7|, as suggested in [20, 22]. With this

restriction, there are only three relevant parameters for each special limit: the modulus of

BL
bs (or BR

bs), its phase φLbs (or φRbs), and the real BR
dd(≃ −BR

uu/2). These parameters need

to satisfy

|BL
bs| < |BL

dd| ≪ |BR
dd| (2.39)

in the LR and LL limits, and

|BR
bs| < |BR

dd|, |BL
dd| ≪ |BR

dd| (2.40)

in the RR limit. Here |BL,R
bs | < |B

L,R
dd | is due to the fact that, under the assumption

of small fermion mixing angles, the modulous of off-diagonal elements in the coupling

matrix in eq. (2.10) should be smaller than that of diagonal ones; |BL
dd| ≪ |BR

dd| is due to

|∆C3,5| ≪ |∆C7|. Later in the paper, we will consider the more general parameter space

for the Z ′-mediated effects in the EW penguins, which has five free parameters: |BL,R
bs |,

φL,Rbs and BR
dd.

2.2 Effective couplings at the b mass scale

To achieve sufficient precision for these observables, it is necessary to have an accurate

knowledge of the relevant Wilson coefficients at the b quark mass scale mb = 4.2 GeV. The

Wilson coefficients at the b mass scale can be obtained as follows:

~C(mb) = U(mb,MW ) ~C(MW ), (2.41)

where ~C is a vector with entries consisting of the Wilson coefficients and U is the evolution

matrix. The observables can then be expressed in terms of the Wilson coefficients at the mb

scale (for general discussions, see e.g. [23]). All parameter values used in our calculations

are summarized in C.

• Bs mixing. Following [23], the NP probes CBs and φBs , which are defined in

eq. (1.1), are calculated to be

CBse
2iφBs = 1− 3.59× 105(∆CBs

1 + ∆C̃Bs

1 ) + 2.04× 106∆C̃Bs

3 (2.42)

at the mb scale. The large coefficients of the correction terms are due to the fact that

the NP is introduced at tree-level while the SM limit is a loop-level effect.

• Bd → πKS decays. The Bd → πKS decays have recently received considerable

interest in the literature (see e.g. [22, 24–28]). In [22], it is pointed out that a deviation

of SπKS
from its SM value can be understood as a modification of the ratio

qeiφ =
P

T + C
, (2.43)
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in which T , C and P denote the color-allowed tree, color-suppressed tree, and EW

penguin contributions in the decay amplitude, respectively. In the class of models

considered here, the family non-universal Z ′ interactions modify qeiφ through the

relation

qeiφ = 0.76(1 + 158.1∆C7 − 102.4∆C̃9), (2.44)

in which q and φ are given by 0.76 and zero, respectively, in the SM limit.

• Bd → (ψ, φ, η′, ρ, ω, f0)KS decays. The direct and the mixing-induced CP

asymmetries in the Bd hadronic decays are parametrized as follows:

CfCP
=

1− |λfCP
|2

1 + |λfCP
|2 , SfCP

=
2Im [λfCP

]

1 + |λfCP
|2 . (2.45)

In the above, λfCP
is defined by

λfCP
≡ −ηfCP

qBd

pBd

ĀfCP

AfCP

, (2.46)

with

qBd

pBd

∣

∣

∣

∆ΓBd
=0

= − (MBd
)∗12

|(MBd
)12|

= −e−2iφBd . (2.47)

Here qBd
and pBd

are Bd mixing coefficients

|BL〉 = pBd
|Bd〉+ qBd

|B̄d〉
|BH〉 = pBd

|Bd〉 − qBd
|B̄d〉, (2.48)

MBd
is the Bd − B̄d mass matrix, and AfCP

is the decay amplitude of Bd → fCP
(ĀfCP

is its CP conjugate.).

The SM predicts that φBd
= β ≡ arg [−(VcdV

∗
cb)/(VtdV

∗
tb)] and that a non-trivial weak

phase enters AfCP
only at order O(λ2). Therefore, for time-dependent decays proceeding

via b → sq̄q(q = u, d, c, s), including Bd → ψKS and penguin-dominated modes such as

Bd → (φ, η′, π, ρ, ω, f0)KS , the relations in eq. (1.4) are obtained.

However, these results are greatly changed with the involvement of family non-universal

Z ′ bosons, since this allows for a new weak phase to enter AfCP
at tree level. Following

Ali et. al. [29], the λfCP
parameters of Bd → (ψ, φ, η′, π, ρ, ω, f0)KS are given by

λψKS
= (−0.63 + 0.74i) (2.49)

1 + (0.18− 0.01i)(∆C7 + ∆C̃7)
∗ − (0.06− 0.04i)(∆C9 + ∆C̃9)

∗

1 + (0.17 + 0.01i)(∆C7 + ∆C̃7)− (0.05 + 0.05i)(∆C9 + ∆C̃9)
,

λφKS
= (−0.70 + 0.70i) (2.50)

1 + (14.57 + 5.88i)(∆C7 + ∆C̃7)
∗ + (15.08 + 5.92i)(∆C9 + ∆C̃9)

∗

1 + (14.39 + 5.64i)(∆C7 + ∆C̃7) + (14.90 + 5.66i)(∆C9 + ∆C̃9)
,
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Figure 1. Correlated constraints on |BL
bs| and φL

bs are presented. In these two panels, random

values for CBs
and φNP

Bs
from the experimentally allowed regions (see table 1) are mapped to the

|BL
bs| − φL

bs plane using eq. (3.1), with an assumed 25% uncertainty (a typical value from non-

perturbative effects) assumed for the coefficients. The left (right) panel is the LR (LL) limit.

λη′KS
= (−0.70 + 0.69i) (2.51)

1 + (2.11 + 0.67i)(∆C7 + ∆C̃7)
∗ + (2.10 + 0.54i)(∆C9 + ∆C̃9)

∗

1 + (2.08 + 0.65i)(∆C7 + ∆C̃7) + (2.07 + 0.52i)(∆C9 + ∆C̃9)
,

λρKS
= (−0.74 + 0.66i) (2.52)

1− (38.75 + 3.29i)(∆C7 + ∆C̃7)
∗ − (47.95 + 4.11i)(∆C9 + ∆C̃9)

∗

1− (38.11 + 5.23i)(∆C7 + ∆C̃7)− (47.15 + 6.50i)(∆C9 + ∆C̃9)
,

λωKS
= (−0.71 + 0.70i) (2.53)

1 + (31.97 + 4.76i)(∆C7 + ∆C̃7)
∗ + (18.84 + 2.75i)(∆C9 + ∆C̃9)

∗

1 + (31.81 + 4.67i)(∆C7 + ∆C̃7) + (18.74 + 2.70i)(∆C9 + ∆C̃9)
,

λf0KS
= (−0.70 + 0.70i) (2.54)

1 + (3.19 + 0.93i)(∆C7 + ∆C̃7)
∗ − (0.12 + 0.15i)(∆C9 + ∆C̃9)

∗

1 + (3.16 + 0.90i)(∆C7 + ∆C̃7)− (0.12 + 0.15i)(∆C9 + ∆C̃9)
.

In contrast to the Bd → ψKS decay, in which the NP effects are suppressed by the SM tree-

level contribution, family non-universal U(1)′ couplings indeed result in sizable corrections

to λfCP
for the penguin-dominated modes.

3 Results and analysis

3.1 Correlated analysis (I). Special limits

In this section, we will present a correlated analysis of the ∆B = 1, 2 processes which

occur via b → s transitions, focusing first on the special limits of the parameter space as

presented in section 2.1. As the physics of the RR limit is very similar to that of the LL

limit, we focus in this paper on the LR and LL limits as representative examples.

We first consider the constraints on this class of family non-universal U(1)′ scenarios

which arise from Bs − B̄s mixing. With the renormalization scale chosen as the b-quark

– 14 –
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Figure 2. The constraints on BR
dd from qeiφ are shown. The points from the |BL

bs| − φL
bs plane

(see figure 1) are randomly combined with scattered points of BR
dd (10−3 ≤ |BR

dd| ≤ 10−1) and then

mapped to the q cosφ − q sinφ plane according to eq. (3.6). The colors of the points in this plane

indicate the C.L. that their inverse images represent in figure 1. The two dashed lines specify the

experimentally allowed ranges that result from the χ2 fit of the B → πK (and B → ππ) data at 1σ

and 90%(≃ 1.7σ) C.L., respectively [24]. The left (right) panels are the LR (LL) limits.

Figure 3. The time-dependent CP asymmetries of the charmed Bd → ψKS decay are presented

(with |Vub| = 3.51 × 10−3, as is used in the SM calculation [33]). The box is at 1σ C.L. and the

dark point is the SM limit. The left (right) panels are the LR (LL) limits.

mass, mb = 4.2 GeV, the NP probes CBs and φNP
Bs

are given by

CBse
2iφNP

Bs = 1 + 1.32× 106∆CBs

1

CBse
2iφNP

Bs = 1− 3.59× 105∆C̃Bs

1 (3.1)

in the LR and LL limits, respectively. These conditions involve two of the three free

parameters of each limit: |BL
bs| and φLbs. The experimental constraints on these parameters

from Bs − B̄s mixing are illustrated in figure 1. The left panel corresponds to the LR

limit and the right one corresponds to the LL limit; in this section we will present the

results for these two limits together, so that it is easy to make comparisons between the

two cases. In each case, there are two separate shaded regions, corresponding to the

two φNP
Bs

solutions (see table 1). For each region, the various colors of the points specify

the different confidence levels (C.L.) of the relevant CBs and φNP
Bs

values. To explain the

– 15 –
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Figure 4. With BL
bs and BR

dd constrained by Bs− B̄s mixing and Bd → πKS , the NP contributions

to C(φ,η′,ρ,ω,f0)KS
and S(φ,η′,ρ,ω,f0)KS

are shown. The left (right) panels are the LR (LL) limits.

The colors specify the C.L. that their inverse image points represent in figures 1 and 2 (yellow for

1σ C.L. and blue for 2σ and 1.7σ C.L.). The boxes specify the experimentally allowed regions at

1σ and 1.7σ, and the dark point denotes the SM limit.
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Figure 5. The allowed |BL
bs|, φL

bs[
◦] and BR

dd are shown. They are constrained from Bs− B̄s mixing

(at 2σ C.L.) and the χ2 fit of the B → πK (and B → ππ) data (at 1σ C.L.), then selected by

C(φ,η′,ρ,ω,f0)KS
, S(φ,η′,ρ,ω,f0)KS

(at 1.7σ C.L. for the first four panels and 1.5σ C.L. for the others).

The left (right) panels are the LR (LL) limits.
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Figure 6. The points in figure 5 are inversely mapped to the q cosφ− q sinφ plane. The panels in

the first row correspond to a parameter selection from C(φ,η′,ρ,ω,f0)KS
, S(φ,η′,ρ,ω,f0)KS

at 1.7σ C.L.

in figure 5, and those in the second row at 1.5σ C.L.. The left (right) panels are the LR (LL) limits.

observed discrepancy in Bs − B̄s mixing from the SM prediction, |BL
bs| is required to be

∼ 10−3. This reflects two facts: (1) unlike φNP
Bs

, the modulus CBs does not deviate from

its SM prediction significantly (the experimental value of CBs has an at most O(1) shift

from its SM prediction at 2σ C.L.); (2) the Z ′ corrections are from tree level, and hence

can easily explain this small deviation (only a small coupling is necessary, according to

eq. (3.1) and eq. (2.36), eq. (2.37)). The smallness of |BL
bs| is generically consistent with our

assumption of small fermion mixing angles, since BL
bs is proportional to them as well as to

g2MZ/(g1MZ′) (see eq. (2.14) and the comments under eq. (2.21)). In addition, due to the

smallness of |BL
bs|, the experimental constraints from the branching ratio Br(Bs → µ+µ−)

can be easily satisfied. For details, see B.

Before we move to the other b→ s processes, we have some comments on the influence

of Bs− B̄s mixing on another FCNC Z ′ coupling BL,R
bd . In the SM, the mass differences of

Bd and Bs mesons are predicted to be (e.g., see [30])

∆MSM
d = (0.53± 0.02)

( |Vtd|
0.0082

)2( fBd

200MeV

)2 B

0.85
ps−1

∆MSM
s = (19.3± 0.6)

( |Vts|
0.00405

)2( fBs

240MeV

)2 B

0.85
ps−1 (3.2)

with fBd,Bs being decay constant of Bd(Bs) and B being bag factor. Comparing with the
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experimental data [31]

∆Md = ∆MSM
d

(

1 +
∆MNP

d

∆MSM
d

)

= 0.507± 0.005ps−1

∆Ms = ∆MSM
s

(

1 +
∆MNP

s

∆MSM
s

)

= 17.77± 0.12ps−1, (3.3)

we have the relation

∆MNP
d

∆MSM
d

∼ ∆MNP
s

∆MSM
s

(3.4)

with

∆MNP
d

∆MNP
s

∼ |B
L,R
bd |2

|BL,R
bs |2

,
∆MSM

d

∆MSM
s

∼ λ2 ≈ 0.04. (3.5)

But, according to eq. (2.14), the modulous of BL,R
bd usually is comparable with that of BL,R

bs ,

a fine-tuning of O(10%) level therefore is needed in |BL,R
bd | to satisfy the experimental

constraints from ∆Md. In this paper, we will work under the assumption of negligible

|BL,R
bd |, and therefore will neglect its possible effect in the NP observables.

The second process of interest is Bd → πKS . The time-dependent CP asymmetries

of these decays can be sizably affected by NP, as has been pointed out in [22]. The

experimental constraints on qeiφ (defined in eq. (2.43)) for different C.L.’s from the B →
πK (and the B → ππ) data have previously been obtained in [24]. In figure 2, we illustrate

how BR
dd is constrained through qeiφ, using the parameter values of |BL

bs| and φLbs obtained

in figure 1, along with the following relations:

qeiφ = 0.76(1 + 55.7∆C7)

qeiφ = 0.76(1 + 158.1∆C7), (3.6)

which are valid in the LR and LL limits, respectively. There are two distribution regions

which are specified by different colors in each panel, again due to the two φNP
Bs

solutions.

Note that in the LL limit, the shaded region passes through both of the minimal points

that were found in the χ2 fit of the B → πK and B → ππ data in [24].

In the scenarios under consideration, the constraints from Bs − B̄s mixing and Bd →
πKS decays place bounds on each of the three free parameters |BL

bs|, φLbs and BR
dd. The

natural question is then whether the experimentally allowed values for these parameters

also satisfy the constraints resulting from the possibly anomalous values of ∆CfCP
and

∆SfCP
in the remaining penguin-dominated Bd → (φ, η′, ρ, ω, f0)KS decays. To address

this issue, we assume a 15% uncertainty in the SM calculations for each of these modes (as

well as for the Bd → πKS mode) and a 25% uncertainty for the NP contributions. Here

15% is a typical uncertainty level for the hadronic matrix elements of the SM FC operators

(e.g., see [32]) and is also the least necessary one to explain the experimental data of CψKS

and SψKS
in the SM (see figure 3 where the NP effects are negligible). As for the difference

of the uncertainty levels between the SM and NP calculations, it is caused by the fact that
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the hadronic matrix elements of the FC operators in the SM are better understood than

they are for the NP operators. In figure 4, we systematically illustrate the time-dependent

CP asymmetries in the penguin-dominated modes, using the parameter values obtained

above and eqs. (2.49)–(2.54). For these modes with the exception of Bd → ρKS , there are

0.5 ∼ 2σ deviations for CfCP
, SfCP

, or both. Though our model only induces negligible

effects on Bd − B̄d mixing under the assumption of small |Bbd|, due to the interference

effects between the Bd − B̄d mixing phase and φLbs which affects the decay asymmetries
ĀfCP

AfCP

in eq. (2.46), the points in figure 4 are scattered away from the SM limits. This

results in a dispersion such that there are always some points lying in the 1σ region for

each of these modes.

To show that all of the constraints can be satisfied simultaneously, we have carried

out a correlated analysis among the Bs − B̄s mixing and the Bd → (π, φ, η′, ρ, ω, f0)KS

CP asymmetries. The allowed values for |BL
bs|, φLbs and BR

dd in the LR and LL limits

are illustrated in figure 5. We see that in figure 5 there indeed exist parameter regions

where the anomalies in Bs− B̄s mixing and the time-dependent CP asymmetries of Bd →
(π, φ, η′, ρ, ω, f0)KS , can be explained by NP at reasonable C.L.. The allowed |BR

bs| and φLbs
values can explain both solutions of Bs − B̄s mixing phase; and the allowed |BR

dd| values

vary from 0.08 to smaller values. If we want to get a better fit for C(π,φ,η′,ρ,ω,f0)KS
and

S(π,φ,η′,ρ,ω,f0)KS
, |BR

dd| >∼ 10−2 is typically required. To see this point, we take for example

CπKS
and SπKS

, and map the points in figure 5 back to the q cosφ − q sinφ plane, as

illustrated in Fig 6. In this figure we see that the points with BR
dd < −0.01 are closer to the

minima of the χ2 fit of the B → πK and B → ππ data, leading to a better fit compared to

the one obtained in the SM limit. Therefore, |BR
dd| >∼ 10−2 is important in improving the

agreement with experimental data in the penguin-dominated Bd decays.5

The favored parameter values for |BR
dd| are interesting for collider detection. For

(VdR
ǫ̃dRVdR

)11 ∼ O(1), this implies that g1MZ′/(g2MZ) ∼ 10 − 100 or a TeV scale Z ′

boson for g2 <
∼ g1, a range approachable at the LHC (e.g., see [17, 34]). This fact is also

important for the effective Lagrangian in eq. (2.16) which is obtained by integrating out the

Z ′ boson. While applying it to our analysis, we neglected the effects of the renormalization

group running between Z ′ mass scale and EW scale, which is justified only for a small

gap between these two scale or for a low-scale Z ′ boson. In addition, we emphasize that

the favored parameter regions are consistent with our assumption that the non-universal

Z ′ effects in QCD penguins are negligible. This assumption requires |∆C3,5| ≪ |∆C7| or

|BL
bs| < |BL

dd| ≪ |BR
dd|. Since |BL

bs| and |BR
dd| are favored to be ∼ 10−3 and >

∼ 10−2 respec-

tively, this relation can be easily accommodated. At last, to implement our discussions, we

take a χ2 fit in the SM and in the non-universal U(1)′ models for all relevant observables

except qeiφ. We find that the reduced χ2 value (i.e., χ2/D.O.F.) in the SM is larger than

2, and that of the best fit in both LL and LR limits in the U(1)′ models is smaller than 1.

Therefore, a better fit is obtained in the latter.

5This effect can also be seen by requiring a smaller C.L. for the fit of C(φ,η′,ρ,ω,f0)KS
and S(φ,η′,ρ,ω,f0)KS

,

which has been shown in the LR limit in figure 4 of [19].
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Figure 7. The distributions of |BL,R
bs | and φL,R

bs resulting from Bs − B̄s mixing constraints are

shown. The blue and purple points can be mapped to the experimentally allowed {CBs
, φNP

Bs
}

regions with 1σ and 2σ C.L., respectively. Here we did not distinct S1 and S2 solutions any more.

Figure 8. The constraints on BR
dd from qeiφ are illustrated. The points of |BL,R

bs | and φL,R
bs from

figure 7 are randomly combined with the scattered points of BR
dd (10−3 < |BR

dd| < 10−1) and then

mapped to the q cosφ− q sinφ plane according to eq. (2.44). The colors of the points in this plane

indicate the C.L. that their inverse images represent in figure 7.
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Figure 9. With the values of |BL,R
bs |, φ

L,R
bs and BR

dd fixed by Bs− B̄s mixing and Bd → πKS decay,

the NP contributions to C(φ,η′,ρ,ω,f0)KS
and S(φ,η′,ρ,ω,f0)KS

are illustrated in the first five panels. The

colors of the points specify the C.L. that their inverse image points represent in figure 7 and figure 8

(yellow denotes 1σ C.L. in both and blue denotes 2σ and 1.7σ C.L., separately). In the last panel,

the CP asymmetries of the charmed Bd → ψKS decay are presented (|Vub| = 3.51×10−3 [33]). For

each, the two boxes specify the 1σ and 1.7σ allowed regions (except for the last panel, where only

the 1σ box is given), and the dark point denotes the SM limit.

3.2 Correlated analysis (II). General case

As discussed in section 2.1, there are five free parameters in the general case: |BL,R
bs |, φ

L,R
bs ,

and BR
dd. Let us focus first on Bs − B̄s mixing again. The general relation in eq. (2.42)

involves four of the five free parameters: |BL,R
bs | and φL,Rbs . In figure 7, we show how the

experimentally allowed parameter values are distributed. For each of the two top panels

in figure 7, there are two peaks and two valleys toward the right. The two peaks in the

left panel correspond to the LL limit, and the two in the right panel correspond to the

– 22 –



J
H
E
P
1
2
(
2
0
0
9
)
0
4
8

Figure 10. The distributions of |BL,R
bs |, φ

L,R
bs and BR

dd are shown. The values are constrained by

Bs − B̄s mixing (2σ C.L.) and the χ2 fit of the B → πK (and B → ππ) data (1σ C.L.), then

selected by C(φ,η′,ρ,ω,f0)KS
, S(φ,η′,ρ,ω,f0)KS

(1.7σ C.L. for the first four panels and 1.5σ C.L. for the

rest).
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Figure 11. The points in figure 11 are inversely mapped to the q cosφ − q sinφ plane. The

parameter selection from C(φ,η′,ρ,ω,f0)KS
, S(φ,η′,ρ,ω,f0)KS

is shown at 1.7σ C.L. in figure 11 the left

panel, and at 1.5σ C.L. in the right panel.

RR limit. Meanwhile, the points in the right panel which are associated with the LL limit

and the points in the left panel which are associated with the RR limit are localized in

the regions |BL
bs| ≈ 0 and |BR

bs| ≈ 0, respectively. As for the valleys in both panels, they

correspond to the LR limit. Observe that there are two solutions for each of these three

limits which are specified by a difference of 180◦ either in φLbs or φRbs (or both). We only

showed one of the two solutions in figure 1, since the difference between these two solutions

can be resolved into BR
dd as a minus sign. For the two bottom panels, the three special

limits LL, LR and RR correspond to the bottom boundary, the diagonal line (the one from

left-bottom to right-up) and the left boundary in the left one, respectively. Clearly, for

the LL (RR) limit, |BL
bs| (|BR

bs|) has a relatively large value compared to the one in the

LR limit, as seen in figure 1. In the right panel, these three limits correspond to the two

parallel bands φLbs ∼ −50◦, 130◦, the diagonal line (the one from left-bottom to right-up)

and the two parallel bands φRbs ∼ −50◦, 130◦, respectively.

In figure 8, we illustrate how the yet free parameter BR
dd is constrained through qeiφ,

using the parameter values of |BL,R
bs | and φL,Rbs obtained in figure 7, the relation eq. (2.44),

and the allowed range for qeiφ as determined in [24]. Compare this figure with figure 2 we

see that more points are associated with the solution “S1” of Bs − B̄s mixing. To see the

reason, let us rewrite eq. (2.42) as

ANP
s

ASM
s

e2iφ
NP
s = 3.59× 105(|BL

bs|2e2iφ
L
bs + |BR

bs|2e2iφ
R
bs)

−2.04× 106|BL
bsB

R
bs|ei(φ

L
bs

+φR
bs

) (3.7)

by using the relation eq. (1.2). Since the range of the solution “S1” is much larger than that

of the solution “S2” at the same C.L. (see table 1), it can be understood that there are more

points in the parameter space corresponding to the “S1” solution under the assumption of

flat distribution for the random values of the relevant parameters.

We illustrate the time-dependent CP asymmetries of the penguin-dominated modes

in figure 9, taking values of |BL,R
bs |, φ

L,R
bs and BR

dd that are consistent with the constraints

from Bs − B̄s mixing and Bd → πKS decays. As before, because of interference effects
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between the Bd − B̄d mixing phase and φLbs, the points in figure 9 are scattered away from

the SM limits. Hence, for each decay mode there are once again always some points lying

in the 1σ region. The allowed values for |BL,R
bs |, φ

L,R
bs and BR

dd due to the correlated analysis

of the Bs − B̄s mixing and the Bd → (π, φ, η′, ρ, ω, f0)KS CP asymmetries are illustrated

in figure 10. In figure 11, as done before, we map the points in figure 10 back to the

q cosφ − q sinφ plane. It is straightforward to see that the points with BR
dd < −0.01 are

closer to the minima of the χ2 fit of the B → πK and B → ππ data, resulting in a better

fit than that obtained in the SM limit.

4 Conclusions

In this paper, we have studied the constraints on extensions of the SM with family non-

universal U(1)′ gauge symmetries which result from FCNC effects in the b→ s transitions.

Using a model-independent approach in which the main requirements are family universal

charges for the first and second generations and small fermion mixing angles, we have

performed a correlated analysis of this set of ∆B = 1, 2 processes. Our results show

that within this class of models, the possible anomalies in Bs − B̄s mixing and the time-

dependent CP asymmetries of the penguin-dominated Bd → (π, φ, η′, ρ, ω, f0)KS decays

can be accommodated in a consistent way.

Furthermore, the constraints from Bs − B̄s mixing may have nontrivial implications

not only for the hadronic decays, but also for the leptonic or semi-leptonic decays of the

Bd mesons, as discussed in section 2.1. As an example, recent results from BaBar [35]

indicate an unexpectedly large isospin asymmetry in the low dilepton mass squared region

for combined Bd → Kl+l− and Bd → K∗l+l−. In addition, K∗ longitudinal polarization

and lepton forward-backward asymmetry are consistent with SM but seem to prefer a

wrong-sign C7γ operator. We leave these interesting issues for future exploration.
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A Operators of effective hamiltonians

A complete compilation of the relevant operators for the b → s transitions is given in

the following:

Current-current operators:

Q1 = (s̄u)V−A (ūb)V−A Q2 = (s̄αuβ)V−A (ūβbα)V−A (A.1)
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QCD-penguin operators:

Q3 = (s̄b)V−A

∑

q

(q̄q)V−A Q4 = (s̄αbβ)V−A

∑

q

(q̄βqα)V−A (A.2)

Q5 = (s̄b)V−A

∑

q

(q̄q)V+A Q6 = (s̄αbβ)V−A

∑

q

(q̄βqα)V+A (A.3)

Q̃3 = (s̄b)V+A

∑

q

(q̄q)V+A Q̃4 = (s̄αbβ)V+A

∑

q

(q̄βqα)V+A (A.4)

Q̃5 = (s̄b)V+A

∑

q

(q̄q)V−A Q̃6 = (s̄αbβ)V+A

∑

q

(q̄βqα)V−A (A.5)

Electroweak penguin operators:

Q7 =
3

2
(s̄b)V−A

∑

q

eq (q̄q)V+A Q8 =
3

2
(s̄αbβ)V−A

∑

q

eq (q̄βqα)V+A (A.6)

Q9 =
3

2
(s̄b)V−A

∑

q

eq (q̄q)V−A Q10 =
3

2
(s̄αbβ)V−A

∑

q

eq (q̄βqα)V−A (A.7)

Q̃7 =
3

2
(s̄b)V+A

∑

q

eq (q̄q)V−A Q̃8 =
3

2
(s̄αbβ)V+A

∑

q

eq (q̄βqα)V−A (A.8)

Q̃9 =
3

2
(s̄b)V+A

∑

q

eq (q̄q)V+A Q̃10 =
3

2
(s̄αbβ)V+A

∑

q

eq (q̄βqα)V+A (A.9)

Magnetic penguin operators:

Q7γ =
e

8π2
mbs̄ασ

µν(1 + γ5)bαFµν Q8G =
g

8π2
mbs̄ασ

µν(1 + γ5)T
a
αβbβG

a
µν (A.10)

Semi-leptonic operators:

Q9V = (b̄s)V−A(l̄l)V Q10A = (b̄s)V−A(l̄l)A

Q̃9V = (b̄s)V+A(l̄l)V Q̃10A = (b̄s)V+A(l̄l)A (A.11)

Bs − B̄s mixing operators:

QBs

1 = (s̄b)V−A(s̄b)V−A QBs

2 = (s̄αbβ)V−A(s̄βbα)V−A

Q̃Bs

1 = (s̄b)V+A(s̄b)V+A Q̃Bs

2 = (s̄αbβ)V+A(s̄βbα)V+A

QBs

3 = Q̃Bs

3 = (s̄b)V+A(s̄b)V−A QBs

4 = Q̃Bs

4 = (s̄αbβ)V+A(s̄βbα)V−A (A.12)

where indices in color singlet currents have been suppressd for simplicity, and V and A

refer to γµ and γµγ5, respectively.

B Constraints of Br(Bs → µ+µ−)

For an order of magnitude estimate, one can temporarily ignore the effect of renormalization

group running. Then the branching ratio of Bs → µ+µ− is given by (also see [36])

Br(Bs → µ+µ−) = τBs

G2
F

4π
f2
Bs
m2
µmBs

√

1−
4m2

µ

m2
Bs

|V ∗
tbVts|2

×
∣

∣

∣

∣

∣

α

2π sin2 θW
Y

(

m2
t

M2
W

)

− 2
(BL

bs +BR
bs)(B

L
µµ −BR

µµ)

V ∗
tbVts

∣

∣

∣

∣

∣

2

. (B.1)
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Here τBs is the lifetime of Bs meson, fBs is the corresponding decay constant, and

Y (m2
t /M

2
W ) in the SM part is defined in [37], with

Y (x) =
x

8

(

4− x
1− x +

3x

(1− x)2 lnx

)

. (B.2)

For x = m2
t /M

2
W , we have Y (x) ∼ 1.

The present experimental exclusion limit at 2σ C.L. from a combination of CDF and

D0 results is [38]

Br(Bs → µ+µ−) ≤ 1.5× 10−7, (B.3)

which thus give a constraint that

∣

∣

∣

∣

∣

3× 10−3 −
(BL

bs +BR
bs)(B

L
µµ −BR

µµ)

V ∗
tbVts

∣

∣

∣

∣

∣

2

<
∼ 10−4. (B.4)

In the LR and LL limits, we have BL
bs = BR

bs ∼ 10−3 and BL
bs ∼ 10−3, BR

bs = 0, respectively.

For (VlL,R
ǫ̃lL,RVlL,R

)22 ∼ O(1) and g1MZ′/(g2MZ) ∼ 10− 100 (a parameter region favored

by the correlated analysis of the anomalies in Bs − B̄s mixing and time-dependent CP

asymmetries of penguin-dominated Bd meson decays; for details, see the last paragraph of

subsection 3.1), this means that the NP contribution is comparable with the SM one. The

experimental bound therefore can be easily satisfied. This conclusion also applies to the

general case. This discussion can be easily extended to the Bd → K(∗)µ+µ− channels (for

a model independent discussion, see [39]). Since the amplitudes of the Bd → K(∗)µ+µ−

decays at the perturbative level are related to the one of Bs → µ+µ− by a crossing symme-

try, the NP contributions to their branching ratios should be comparable to the SM ones

as well. The current experimental bounds on Br(Bd → K(∗)µ+µ−) are still order away

from the SM predictions [4], we believe therefore that there is no difficulty to satisfy these

constraints in our model.

C Parameters

The parameters used in our numerical analysis are summarized below:

1. QCD and EW parameters

GF = 1.16639× 10−5GeV −2, Λ
(5)

MS
= 225MeV, (C.1)

MW = 80.42GeV, sin2 θW = 0.23, (C.2)

η2B = 0.55, J5 = 1.627, (C.3)

αs(MZ) = 0.118, αem = 1/128, (C.4)

λ = 0.2252, A = 0.8117, (C.5)

ρ̄ = 0.145, η̄ = 0.339, (C.6)

Rb =
√

ρ2 + η2 = 0.378. (C.7)
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2. Masses, Decay Constants, Hadronic Form Factors and Lifetimes

Mπ± = 0.139GeV, Mπ0 = 0.135GeV, (C.8)

MK = 0.498GeV, MB = 5.279GeV, (C.9)

Mφ = 1.02GeV, Mψ = 2.097GeV, (C.10)

Mη′ = 0.958GeV, Mω = 0.783GeV, (C.11)

Mρ = 0.776GeV, Mη = 0.548GeV (C.12)

Mf0 = 0.980GeV, (C.13)

Xη = 0.57, Yη = 0.82, (C.14)

mu(µ = 4.2 GeV) = 1.86MeV, md(µ = 4.2 GeV) = 4.22MeV, (C.15)

ms(µ = 4.2 GeV) = 80MeV, mc(µ = 4.2 GeV) = 0.901GeV, (C.16)

mb(µ = 4.2 GeV) = 4.2GeV, mpole
t = 174GeV, (C.17)

fφ = 237MeV, fB = 190MeV, (C.18)

fπ = 130MeV, fK = 160MeV, (C.19)

fψ = 410MeV, fω = 200MeV, (C.20)

fρ = 209MeV, ff0 = 180MeV, (C.21)

FBπ0 (0) = 0.330, FBK0 (0) = 0.379, (C.22)

FBK1 (0) = 0.379, ABω0 (0) = 0.280, (C.23)

FBf0 (0) = 0.250, F fK0 (0) = 0.030, (C.24)

ABρ0 = 0.280, fBs

√

B̂Bs = 0.262 (C.25)

τB0 = 1.530ps, τB− = 1.65ps, (C.26)

MBs = 5.37GeV, τBs = 1.47ps, (C.27)
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[18] P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Z ′ boson

with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204]

[SPIRES].

[19] V. Barger et al., Family non-universal U(1)′ gauge symmetries and b→ s transitions, Phys.

Rev. D 80 (2009) 055008 [arXiv:0902.4507] [SPIRES].

[20] V. Barger, C.-W. Chiang, P. Langacker and H.-S. Lee, Z ′ mediated flavor changing neutral

currents in B meson decays, Phys. Lett. B 580 (2004) 186 [hep-ph/0310073] [SPIRES].

[21] V. Barger, C.-W. Chiang, P. Langacker and H.-S. Lee, Solution to the B → πK puzzle in a

flavor-changing Z ′ model, Phys. Lett. B 598 (2004) 218 [hep-ph/0406126] [SPIRES];

V. Barger, C.-W. Chiang, J. Jiang and P. Langacker, Bs − B̄s mixing in Z ′ models with

flavor-changing neutral currents, Phys. Lett. B 596 (2004) 229 [hep-ph/0405108] [SPIRES];

S. Baek, J.H. Jeon and C.S. Kim, B0
s − B̄0

s mixing and B → πK decays in stringy

leptophobic Z ′, Phys. Lett. B 664 (2008) 84 [arXiv:0803.0062] [SPIRES];

X.-G. He and G. Valencia, B̄sBs mixing constraints on FCNC and a non-universal Z’, Phys.

Rev. D 74 (2006) 013011 [hep-ph/0605202] [SPIRES];

R. Mohanta and A.K. Giri, Explaining B → Kπ anomaly with non-universal Z ′ boson, Phys.

Rev. D 79 (2009) 057902 [arXiv:0812.1842] [SPIRES];

Q. Chang, X.Q. Li and Y.D. Yang, Constraints on the nonuniversal Z ′ couplings from

B → πK, πK∗ and ρK decays, arXiv:0903.0275 [SPIRES].

[22] A.J. Buras, R. Fleischer, S. Recksiegel and F. Schwab, B → ππ, new physics in B → πK and

implications for rare K and B decays, Phys. Rev. Lett. 92 (2004) 101804 [hep-ph/0312259]

[SPIRES]; Anatomy of prominent B and K decays and signatures of CP- violating new

physics in the electroweak penguin sector, Nucl. Phys. B 697 (2004) 133 [hep-ph/0402112]

[SPIRES].

[23] G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms,

Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [SPIRES].

[24] R. Fleischer, S. Jager, D. Pirjol and J. Zupan, Benchmarks for the new-physics search through

CP-violation in B0 → π0KS , Phys. Rev. D 78 (2008) 111501 [arXiv:0806.2900] [SPIRES].

[25] M. Gronau and J.L. Rosner, Implications for CP asymmetries of improved data on

B → K0π0, Phys. Lett. B 666 (2008) 467 [arXiv:0807.3080] [SPIRES].

[26] C.-W. Chiang, M. Gronau, J.L. Rosner and D.A. Suprun, Charmless B → P P decays using

flavor SU(3) symmetry, Phys. Rev. D 70 (2004) 034020 [hep-ph/0404073] [SPIRES].

[27] S. Baek, C.-W. Chiang and D. London, The B → πK puzzle: 2009 update, Phys. Lett. B

675 (2009) 59 [arXiv:0903.3086] [SPIRES].

– 30 –

http://dx.doi.org/10.1088/1126-6708/2009/03/001
http://arxiv.org/abs/0809.1073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.1073
http://dx.doi.org/10.1088/1126-6708/2009/03/108
http://arxiv.org/abs/0812.3803
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.3803
http://dx.doi.org/10.1088/1126-6708/2009/09/064
http://arxiv.org/abs/0903.2415
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.2415
http://arxiv.org/abs/0801.1345
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.1345
http://dx.doi.org/10.1103/PhysRevD.62.013006
http://arxiv.org/abs/hep-ph/0001204
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0001204
http://dx.doi.org/10.1103/PhysRevD.80.055008
http://dx.doi.org/10.1103/PhysRevD.80.055008
http://arxiv.org/abs/0902.4507
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.4507
http://dx.doi.org/10.1016/j.physletb.2003.11.057
http://arxiv.org/abs/hep-ph/0310073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0310073
http://dx.doi.org/10.1016/j.physletb.2004.07.057
http://arxiv.org/abs/hep-ph/0406126
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0406126
http://dx.doi.org/10.1016/j.physletb.2004.06.105
http://arxiv.org/abs/hep-ph/0405108
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0405108
http://dx.doi.org/10.1016/j.physletb.2008.04.058
http://arxiv.org/abs/0803.0062
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.0062
http://dx.doi.org/10.1103/PhysRevD.74.013011
http://dx.doi.org/10.1103/PhysRevD.74.013011
http://arxiv.org/abs/hep-ph/0605202
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605202
http://dx.doi.org/10.1103/PhysRevD.79.057902
http://dx.doi.org/10.1103/PhysRevD.79.057902
http://arxiv.org/abs/0812.1842
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.1842
http://arxiv.org/abs/0903.0275
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.0275
http://dx.doi.org/10.1103/PhysRevLett.92.101804
http://arxiv.org/abs/hep-ph/0312259
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0312259
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.009
http://arxiv.org/abs/hep-ph/0402112
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0402112
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://arxiv.org/abs/hep-ph/9512380
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9512380
http://dx.doi.org/10.1103/PhysRevD.78.111501
http://arxiv.org/abs/0806.2900
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.2900
http://dx.doi.org/10.1016/j.physletb.2008.08.004
http://arxiv.org/abs/0807.3080
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.3080
http://dx.doi.org/10.1103/PhysRevD.70.034020
http://arxiv.org/abs/hep-ph/0404073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0404073
http://arxiv.org/abs/0903.3086
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.3086


J
H
E
P
1
2
(
2
0
0
9
)
0
4
8

[28] M. Ciuchini, E. Franco, G. Martinelli, M. Pierini and L. Silvestrini, Searching for new

physics with B → Kπ decays, Phys. Lett. B 674 (2009) 197 [arXiv:0811.0341] [SPIRES].

[29] A. Ali, G. Kramer and C.-D. Lu, Experimental tests of factorization in charmless

non-leptonic two-body B decays, Phys. Rev. D 58 (1998) 094009 [hep-ph/9804363] [SPIRES].

[30] U. Nierste, Bd and Bs mixing: mass and width differences and CP-violation, Nucl. Phys.

Proc. Suppl. 170 (2007) 135 [hep-ph/0612310] [SPIRES].

[31] Heavy Flavor Averaging Group (HFAG) collaboration, E. Barberio et al., Averages of

b−hadron properties at the end of 2006, arXiv:0704.3575 [SPIRES].

[32] M. Wirbel, B. Stech and M. Bauer, Exclusive semileptonic decays of heavy mesons, Z. Phys.

C 29 (1985) 637 [SPIRES];

M. Bauer, B. Stech and M. Wirbel, Exclusive nonleptonic decays of D, Ds and B mesons, Z.

Phys. C 34 (1987) 103 [SPIRES];

J.G. Korner and G.A. Schuler, Exclusive semileptonic decays of bottom mesons in the

spectator quark model, Z. Phys. C 38 (1988) 511 [Erratum ibid. C 41 (1988) 690] [SPIRES];

M. Bauer and M. Wirbel, Form-factor effects in exclusive d and B decays, Z. Phys. C 42

(1989) 671 [SPIRES].

[33] http://ckmfitter.in2p3.fr/plots Summer08/ckmEval results.html.

[34] M.S. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z ′ gauge bosons at the Tevatron,

Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [SPIRES].

[35] BABAR collaboration, B. Aubert et al., Direct CP, lepton flavor and isospin asymmetries in

the decays B → K(∗)ℓ+ℓ−, Phys. Rev. Lett. 102 (2009) 091803 [arXiv:0807.4119] [SPIRES];

Babar collaboration, K.T. Flood, Angular and isospin asymmetries in the decays

B → K(∗)ℓ+ℓ−, arXiv:0810.0837 [SPIRES].

[36] K. Cheung, C.-W. Chiang, N.G. Deshpande and J. Jiang, Constraints on flavor-changing Z’

models by B/s mixing, Z’ production and B/s → µ+µ−, Phys. Lett. B 652 (2007) 285

[hep-ph/0604223] [SPIRES].

[37] G. Buchalla and A.J. Buras, QCD corrections to rare K and B decays for arbitrary top quark

mass, Nucl. Phys. B 400 (1993) 225 [SPIRES].

[38] CDF collaboration, R. Bernhard et al., A combination of CDF and D0 limits on the

branching ratio of B0
s (d) → µ+µ− decays, hep-ex/0508058 [SPIRES].

[39] G. Buchalla, G. Hiller and G. Isidori, Phenomenology of nonstandard Z couplings in exclusive

semileptonic b→ s transitions, Phys. Rev. D 63 (2000) 014015 [hep-ph/0006136] [SPIRES].

– 31 –

http://dx.doi.org/10.1016/j.physletb.2009.03.011
http://arxiv.org/abs/0811.0341
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.0341
http://dx.doi.org/10.1103/PhysRevD.58.094009
http://arxiv.org/abs/hep-ph/9804363
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9804363
http://dx.doi.org/10.1016/j.nuclphysBPS.2007.05.017
http://dx.doi.org/10.1016/j.nuclphysBPS.2007.05.017
http://arxiv.org/abs/hep-ph/0612310
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0612310
http://arxiv.org/abs/0704.3575
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.3575
http://dx.doi.org/10.1007/BF01560299
http://dx.doi.org/10.1007/BF01560299
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA,C29,637
http://dx.doi.org/10.1007/BF01561122
http://dx.doi.org/10.1007/BF01561122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA,C34,103
http://dx.doi.org/10.1007/BF01584403
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA,C38,511
http://dx.doi.org/10.1007/BF01557675
http://dx.doi.org/10.1007/BF01557675
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA,C42,671
http://ckmfitter.in2p3.fr/plots_Summer08/ckmEval_results.html
http://dx.doi.org/10.1103/PhysRevD.70.093009
http://arxiv.org/abs/hep-ph/0408098
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0408098
http://dx.doi.org/10.1103/PhysRevLett.102.091803
http://arxiv.org/abs/0807.4119
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.4119
http://arxiv.org/abs/0810.0837
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.0837
http://dx.doi.org/10.1016/j.physletb.2007.07.032
http://arxiv.org/abs/hep-ph/0604223
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0604223
http://dx.doi.org/10.1016/0550-3213(93)90405-E
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B400,225
http://arxiv.org/abs/hep-ex/0508058
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-EX/0508058
http://dx.doi.org/10.1103/PhysRevD.63.014015
http://arxiv.org/abs/hep-ph/0006136
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0006136

	Introduction
	Theoretical background
	Formalism of Z'-induced FCNC effects
	Effective couplings at the b mass scale

	Results and analysis
	Correlated analysis (I). Special limits
	Correlated analysis (II). General case

	Conclusions
	Operators of effective hamiltonians
	Constraints of Br (Bs to mu*+ mu*-)
	Parameters

